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ABSTRACT

Selection functions enable Evolutionary Algorithms (EAs) to apply selection pres-

sure to a population of individuals, by regulating the probability that an individual’s genes

survive, typically based on fitness. Various conventional fitness based selection functions

exist, each providing a unique method of selecting individuals based on their fitness, fitness

ranking within the population, and/or various other factors. However, the full space of selec-

tion algorithms is only limited by max algorithm size, and each possible selection algorithm

is optimal for some EA configuration applied to a particular problem class. Therefore,

improved performance is likely to be obtained by tuning an EA’s selection algorithm to

the problem at hand, rather than employing a conventional selection function. This thesis

details an investigation of the extent to which performance can be improved by tuning the

selection algorithm. We do this by employing a Hyper-heuristic to explore the space of

algorithms which determine the methods used to select individuals from the population.

We show, with both a conventional EA and a Covariance Matrix Adaptation Evolutionary

Strategy, the increase in performance obtained with a tuned selection algorithm, versus

conventional selection functions. Specifically, we measure performance on instances from

several benchmark problem classes, including separate testing instances to show general-

ization of the improved performance. This thesis consists of work that was presented at the

Genetic and Evolutionary Computation Conference (GECCO) in 2018, as well as work that

will be submitted to GECCO in 2019.
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1. INTRODUCTION

Evolutionary Algorithms (EAs), as well as related stochastic meta-heuristics, are

applied to many real-world problems, including problems in the fields of optimization,

modeling, and system design. Their success is due to a number of important factors. They

make no assumptions about the optimality of any solution design, and they are blind to

the preconceptions that human-built solutions may be constructed from. As such, they

can generate solutions using approaches that a human might not invent. Additionally,

the mechanisms of an EA allow it to avoid and escape local optima in the solution space,

exploring a greater range of solutions in search of a better optimum. Their structure naturally

lends itself to parallelism, as candidate solutions can be evaluated simultaneously on their

own individual computing threads. EA’s are relatively easy to implement, requiring, at a

basic level, only a method of evaluating solutions and a method of building new solutions

from old ones. However, the performance of an EA is highly sensitive to the parameters used

to configure it (Eiben et al., 1999). The fields of automated algorithm configuration and

Hyper-heuristics address this by exploring methods to remove the human bias in selection

of algorithm parameters and search methods. Hyper-heuristics, in particular, are used to

automate the generation of EA heuristics and algorithmic components, such as mutation

operators, recombination operators, population sizing, and selection functions.

EAs employ selection functions to control the probability that an individual’s genes

are selected for recombination and survival. Various conventional fitness-based selection

functions exist, each providing a unique method of selecting individuals. These (potentially

independent) may then undergo recombination and/or survival selection, or be used for

some other update to the status of the population and internal variables of the EA. Often,

the goal of these selection functions is to push the population of the EA towards an area of

higher fitness, or to explore a region of the search space to find a potential growth direction.
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It follows that each selection algorithm plays a significant role in determining the behavior

of the EA and the population, and thus, the average performance of the EA’s search through

the space of solutions (Woodward, 2010). Many selection algorithms are parameterized,

allowing for further variance in the behavior they provide. In cases where parameterized

selection algorithms are applied, the parameters can be carefully tuned, either manually or

with tuning software, to maximize the performance of an EA on a particular problem or

problem class.

New selection algorithms can be designed in cases where the performance offered

by existing algorithms is insufficient, even with well-tuned parameters. However, the full

space of selection algorithms is only limited by the maximum algorithm size, and so it

is highly unlikely that any conventionally human-designed algorithm offers the optimal

selection behavior for the EA. An implication of the “No Free Lunch” theorem (Wolpert

et al., 1995), each possible selection algorithm is optimal for some EA configuration

applied to a particular problem class. Therefore, a performance gain is likely to be attained

by exploring the space of selection algorithms to find one that offers better performance

than any conventional selection algorithm. Previous work has confirmed this hypothesis,

prompting our approach to use a Hyper-heuristic and a custom representation of selection

functions to explore the space of new selection functions (Woodward and Swan, 2011).

Our approach employs a Hyper-heuristic, with both generative and perturbative

elements, to explore the space of selection algorithms, with each search algorithm rep-

resented by two components. The first component is a Koza-style Genetic Programming

(GP) tree (Koza, 1994), encoding a mathematical function that calculates how desirable

an individual is at the current stage of evolution. The second component is a method of

selecting individuals, based on how desirable they are calculated to be.

The rest of this thesis is organized as follows. Section 2 covers a review of the

relevant literature concerning the use of Hyper-heuristics for the targeted improvement of

search algorithms and EA components, including selection functions. Section 3 details
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the methodology of the meta-EA powering our Hyper-heuristic, including our customized

representation of selection functions that defines the space we search with the Hyper-

heuristic. Section 4 summarizes the exploratory initial experiment we performed with an

earlier version of this methodology; this work is detailed further in (Richter and Tauritz,

2018). Section 5 details the three main experiments testing the latest version of our

methodology, including an updated version of the experiment described in Section 4. In

Section 6, we show and discuss the results obtained from our experiments. We conclude

our findings in Section 7. In Section 8, we discuss how the assumptions made in our

experimental setup may affect the validity of our conclusions. In Section 9, we discuss

potential avenues of future work for this research.

This thesis also contains four appendices. Appendix A shows psuedocode for

the selection methods employed by the evolved selection functions. Appendix B shows

the tuned parameters used for the bottom level EA in our second primary experiment.

Appendix C contains representations of typical selection functions in the evolved selection

format. Appendix D contains an addendum procedure and results for our third primary

experiment.
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2. LITERATURE REVIEW

The field of Hyper-heuristics encompasses many different approaches for the auto-

mated design of new algorithms. Methodsmay utilize offline learning, inwhich computation

is done a priori to develop a heuristic, or online learning, in which a heuristic is developed

dynamically alongside a running problem. Hyper-heuristic searches can be perturbative,

in which complete solutions are considered individually, or generative, in which solutions

begin partially built and are extended iteratively (Burke et al., 2013). The Hyper-heuristic

presented in this thesis is an offline-learning heuristic that combines these approaches,

building one component of a selection algorithm with a generative method, and selecting

another component in a perturbative manner.

A major application of Hyper-heuristics is the automated design of algorithmic

components, which various algorithms have been shown to benefit from. Hyper-heuristics

have been used to evolve new algorithms from components of existing algorithms for Ant

Colony optimization algorithms (Lopez-Ibanez and Stutzle, 2012), Boolean Satisfiability

solvers (KhudaBukhsh et al., 2009), local search heuristics (Burke et al., 2012), and iterative

parse trees representing Black Box Search Algorithms (Martin and Tauritz, 2013). The

research described in this thesis applies the same concept to selection functions, employing

a Hyper-heuristic to build selection functions from smaller components to search the space

of new selection functions. In particular, the practice of using GP as a Hyper-heuristic has

been discussed in (Burke et al., 2009) and explored in a number of works (Burke et al.,

2010, 2006; Harris et al., 2015).

Previous work has also focused on improvement of targeted components of EAs,

including the evolution of new mutation operators (Hong et al., 2013; Woodward and

Swan, 2012), mating preferences (Guntly and Tauritz, 2011), genetic representation of in-

dividuals (Scott and Bassett, 2015), and crossover operators (Goldman and Tauritz, 2011).
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Methods for generating selection algorithms, in particular, have been investigated. A ran-

dom walk through the space of register machines that compute and return a probability

of selection for each individual showed that such custom-tuned selection algorithms can

outperform typical selection algorithms (Woodward and Swan, 2011). A more informed

search through the space of selection algorithms may yield an even greater benefit than a

random search. In the previous work involving the evolution of Black Box Search Algo-

rithms, the parse trees include evolved selection functions, although the selection functions

are limited to two conventional selection functions (k-tournament and truncation) with

evolved parameters (Martin and Tauritz, 2013). An evolutionary search through selection

functions developed with Grammatical Evolution showed that better selection functions can

be developed using a Hyper-heuristic, and that the performance of these selection functions

can generalize to new instances within the same problem class (Lourenço et al., 2013). The

work described in this thesis expands on these ideas with a new representation for selection

algorithms: an encoding of the relationship between various factors, such as an individual’s

fitness, uniqueness, and the population size, and how desirable it is for an EA to select

that individual, as well as the method used to ultimately select individuals based on how

desirable they are.

To search the space of selection algorithms defined by this representation, we em-

ploy a combination of perturbative and generative Hyper-heuristics. Previous work has

applied such combinations of Hyper-heuristic types to memetic algorithms (Krasnogor

and Gustafson, 2004), EA operator control (Maturana et al., 2010), low-level heuristic

management (Remde et al., 2012), and vehicle routing (Garrido and Riff, 2010).
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3. METHODOLOGY

Here we discuss themethodology of our Hyper-heuristic, and themeta-EA powering

it. We first outline the format we use to represent selection functions in the meta-EA. The

selection functions are built by a combined generative and perturbative Hyper-heuristic. We

then discuss how we use the meta-EA to evaluate and search for new selection functions.

3.1. ENCODING SELECTION FUNCTIONS

Most typical selection functions are formatted as a series of algorithmic steps, which

take as input a population of individuals and output a subset of the individuals, as selected

by the algorithm. While we could explore the entire combinatorial space of algorithmic

steps to find new selection functions, doing so would generate many algorithms which

are not valid selection functions, or even functional algorithms. Therefore, we need a

representation of selection functions that is both robust enough to represent a wide variety

of selection functions, yet constrained enough that we can effectively search within it to find

new, valid selection algorithms.

To this end, we developed a generalized format to represent a selection function,

which can encode both a number of traditional selection functions as well as novel selection

functions. The representation consists of two major parts. The first part is a binary Koza-

style GP-Tree (Koza, 1994). Rather than encoding entire programs within the GP-Tree,

which could result in an infeasibly wide search space of selection algorithms (Woodward

and Bai, 2009), the GP-Tree instead encodes a mathematical function. All of the function

inputs (the terminals of the GP-Tree) are real-valued numbers, and all of the operators in the

GP-Tree operate on, and return, real-valued numbers. The terminals of the GP-Tree include

various factors pertinent to a single individual of the population, including the individual’s

fitness, the individual’s fitness ranking among the population members, the uniqueness of
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the individual’s genome, and the individual’s age, in generations. The possible terminal

inputs also include information pertinent to the evolution at large, including the total size

of the population, the current generation, the maximum and minimum fitness values in the

population, and the sum of the individuals’ fitness values. Constants are also included, as

well as random terminals, which return a random number within a (configurable) closed

range. Binary operators in the GP-Tree include various arithmetic and other mathematic

functions. Refer to Table 3.1 for a description of the possible operators and Table 3.2 for

a description of the possible terminal nodes. When evaluated, the mathematical function

encoded by the GP-Tree returns a single real-valued number, corresponding to the relative

“desirability” of the individual whose data was input into the function. This GP-Tree is

built by the generative part of the Hyper-heuristic, and can encompass any valid parse tree

built from the available operators and terminals.

The second part of the evolved selection function is a method of selecting individ-

uals based on their desirabilities, as calculated by the mathematical function encoded by

the GP-Tree. The possible selection methods are inspired by traditional selection functions,

such as truncation, tournament selection, fitness-proportional selection, and stochastic uni-

versal sampling. Some selection methods will select with replacement, allowing a single

individual to be selected more than once per generation. Other methods will not select with

replacement; under these methods, an individual may only be selected once per generation.

See Table 3.3 for a description of each selection method. Psuedocode for each of these

selection methods may be found in Appendix A. This component is the part of the selection

function built by the perturbative Hyper-heuristic, being exactly one choice from a set of

pre-determined methods.

To perform selection on a population, the function encoded by the GP-Tree is

evaluated once for each member of the population, using the data points for that individual

(fitness value, fitness ranking, etc.) as inputs to the function. The number output by the

function becomes the desirability score for each individual. Finally, the selection step is used
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Table 3.1. Possible GP-Tree Operators

Operator Operands Description

+ 2 Adds the left and right operands.
- 2 Subtracts the right operand from the left operand.
* 2 Multiplies the left and right operands.
/ 2 Divides the left operand by the right operand. If the

right operand is 0, the left operand is instead divided by
a very small number, returning a large number while
preserving the sign of the left operand.

Min 2 Returns the minimum of the left and right operands.
Max 2 Returns the maximum of the left and right operands.
Step 2 Returns 1 if the left operand is greater than or equal to

the right operand, and 0 otherwise.
Absolute Value 1 Returns the absolute value of the operand.

to select individuals based on the individuals’ desirability scores. The selected individuals

can then be used for recombination, as the survivors for the next generation, or for any

other update to the internal variables that depends on a chosen subset of the population, as

pertinent to the evolutionary search strategy used.

An example of this representation is shown in Figure 3.1. The figure shows an

example of a GP-Tree that represents the function evaluated for each individual, as well as

a final selection method used. It also indicates which portions of the function are generated

by the generative and perturbative logic of the Hyper-heuristic. The psuedocode for this

method of selection is shown in Algorithm 1. With this selection function, the desirability

of any individual is calculated as the individual’s fitness rating plus 5, multiplied by the

individual’s ranking in the population ordered by fitness. The selection method used is

Proportional-No-Replacement, so the probability of any individual being selected is directly

proportional to its desirability score, and an individual cannot be selected more than once.

Note that the GP-Tree is build by the generative component of the Hyper-heuristic, and the

selection method is chosen by the perturbative component of the Hyper-heuristic.
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Table 3.2. Possible GP-Tree Terminals

Terminal Description

Fitness The individual’s fitness value.
Fitness Rank The individual’s index in a list of the population mem-

bers sorted by fitness, increasing.
Relative Fitness The individual’s fitness value divided by the sum of

all fitness values in the population.
Birth Generation The generation number that the individual first ap-

peared in the population.
Relative Uniqueness The Cartesian distance between the individual’s

genome and the centroid of all genomes in the popu-
lation.

Population Size The number of individuals in the population.
Min Fitness The smallest fitness value in the population.
Max Fitness The largest fitness value in the population.
Sum Fitness The sum of all fitness values in the population.

Generation Number The number of generations of individuals that have
been evaluated since the beginning of evolution.

Constant A constant number, which is generated from a uniform
selection within a configured range when the selection
function is generated and held constant for the entire
lifetime of the selection function.

Random A random number, which is generated from a uni-
form selection within a configured range every time
selection is performed.

Table 3.3. Possible selection methods for evolved selection functions

Method Description
Proportional-Replacement A weighted random selection, with each individual’s

weight equal to its desirability score.
Proportional-No-Replacement As with Proportional-Replacement, but an individual

is removed from the selection pool after being selected.
k-Tournament-Replacement A random subset of k individuals is considered, and

the individual with the highest desirability score in the
subset is selected.

k-Tournament-No-Replacement Aswith k-Tournament-Replacement, but an individual
is removed from the selection pool after being selected.

Truncation Individuals with the highest desirability score are se-
lected, with no individual being selected more than
once.

Stochastic-Universal-Sampling Individuals are chosen at evenly spaced intervals of
their desirability scores.
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Figure 3.1. Example of a generated selection function.

Figure 3.2 shows how, for a hypothetical sample population of nine individuals,

different selection functions will result in different probabilities of each individual being

selected. The graph also includes the selection probabilities for the custom selection

algorithm represented by the GP-Tree in Figure 3.1.

3.2. SEARCH METHODOLOGY

To develop high-quality selection functions, we need a method to search through

the space of selection functions defined by the representation described in Section 3.1.

We use a meta-EA to develop the selection functions, treating each complete selection

function as a member of a higher-order population. After generating an initial pool of

randomly constructed selection functions, the quality of each complete selection function is

determined, and well-performing selection functions are chosen to recombine and mutate

into new candidate selection functions.

The quality of each selection function is determined by running an underlying EA

on a suite of static training instances from a benchmark problem class. The underlying EA

utilizes the selection function in question, and keeps all other parameters constant. The
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Algorithm 1An example of the psuedocode for a generated selection function. The function
takes as input a population P of individuals, and a number of individuals m to be selected.
Each individual p in P has member elements p.Fitness and p.FitnessRank, encoding the
individual’s fitness and fitness ranking, respectively. Other generated selection functions
may use additional information (see Table 3.2). The function returns a set of selected
individuals. Note the weight calculation performed on Line 4, which is controlled by the
GP-Tree encoded in the selection function. Also note that ∅ is used to denote the empty set.
1: function ExampleSelection(P,m)
2: W(p) ← 0,∀p ∈ P
3: for all p ∈ P do
4: W(p) ← (p.Fitness + 5) ∗ p.FitnessRank
5: end for
6: wmin ← minimum(W)
7: s← 0
8: for all w ∈ W do
9: if wmin < 0 then
10: s← s + (w − wmin)

11: else
12: s← s + w
13: end if
14: end for
15: selected ← ∅
16: for j ← 1,m do
17: r ← random(0, s)
18: i ← 1
19: ps ← P(i)
20: while r > W(ps) do
21: r ← r −W(ps)

22: i ← i + 1
23: ps ← P(i)
24: end while
25: selected ← selected ∪ ps
26: P← P − ps
27: end for
28: return selected
29: end function
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Figure 3.2. A comparison of the chances that each member of a sample population, with
fitnesses as listed, will be selected, under each of the typical selection strategies listed, as
well as the custom selection strategy shown in Figure 3.1.

performance of the underlying EA is averaged over multiple runs, and is used to determine

the quality of a selection function; selection functions that enable the EA to perform better,

with all other parameters constant, are considered to be “higher-quality” selection functions.

This information is fed back into the meta-EA to generate the next set of candidate selection

functions. Selection functions that perform extremely poorly, because they fail to provide

any selection pressure toward areas of high fitness, are pruned out of the population and

never used to generate new selection functions.

To prevent the size of the GP-Trees from growing too large, parsimony pressure is

applied to the selection functions in the following manner: after the entire generation of

selection functions is rated, the fitness assigned to each selection function is reduced by

an amount equal to the number of nodes in all the function’s GP-Trees, times a parsimony

coefficient c, times the difference in fitness between the best and worst selection functions

in the population (after the extremely poor selection functions are removed). For example,
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Figure 3.3. The GP-Trees for an example population of 3 individuals.

suppose we have a population of three selection functions with the GP-Trees shown in

Figure 3.3, and fitness assignments of 20, 20, and 30, respectively. For the first tree, the

penalty due to parsimony pressure is calculated as (best f itness−worst f itness) ∗ c ∗ size.

If we assume a parsimony coefficient of c = 0.005, then the fitness penalty is equal to

(30 − 20) ∗ 0.005 ∗ 5 = 10 ∗ 0.025 = 0.25, and the fitness assigned to the individual is

20 − 0.25 = 19.75. For individuals whose genomes contain multiple selection functions,

and thus, multiple GP-Trees, the sum of the sizes of all GP-Trees is used.

When the meta-EA concludes, the bottom-level EA utilizing the best selection

function from the meta-EA is run on a set of separate testing instances from the same

problem class to test the generalization of the selection function’s performance. If the EA

utilizing the best selection function performs significantly better on the testing instances

than the same EA using a standard selection function, then we can say that the evolved

selection function successfully generalized to the problem class of interest.

By using a meta-EA to evolve selection functions with a priori computation, we are

utilizing an offline Hyper-heuristic, with the goal being to evolve a selection function that

offers better generalized performance on all instances of a particular problem class. For this

initial exploration into evolving selection functions, we decided to employ an offline Hyper-

heuristic in order to better estimate the performance upper bound without the overhead

potentially incurred by an online hyper-heuristic.
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The benchmark problem classes used for the underlying EA are selected from two

sources. The first source of benchmark problems is theMK-Landscape class of optimization

problems (Whitley et al., 2016). This problem set is a generalization of the NK-landscape

problem class, first introduced in (Kaufmann, 1993). This benchmark was chosen because

the properties of the fitness landscape can be easily controlled with the N, M, and K

parameters, as well as the policy with which the fitness values of the loci are generated.

With one set of parameters, a wide range of new MK-Landscapes can be easily generated,

making it easy to provide both a variety of training landscapes to tune a selection algorithm

to, and a variety of new, separate landscapes to use for testing the generalization of the

selection algorithm.

As a second source of benchmark problems, we also select functions from the

Comparing Continuous Optimizers (COCO) platform used for the GECCO Workshops

on Real-Parameter Black-Box Optimization Benchmarking (Hansen et al., 2016). This

benchmark set provides a suite of real-valued optimization problems that serve as a robust

testbed for optimization algorithms, including EAs. These problems are well-suited to

measuring the strength of an EA and how well it performs under various conditions,

which makes it an excellent choice for measuring how different selection functions impact

the performance of an EA. Additionally, each problem class in the suite offers multiple

problems, which allows us to both test the EA’s performance on a variety of similar problems

and test whether an increase in performance offered by a higher-quality selection function

generalizes to other instances within the problem class.



www.manaraa.com

15

4. INITIAL EXPERIMENTATION

Here we discuss the initial experimentation performed with an earlier version of

our Hyper-heuristic, to explore the prospects of using a Hyper-heuristic to evolve a relation

between an individual’s fitness score and the probability of being selected. The Hyper-

heuristic used a methodology similar to the current version, as described in Section 3.1.

However, the GP operators were limited to the arithmetic functions (+, -, *, and /) and the

step function1. The GP terminals were limited to fitness, fitness ranking, population size,

constant, and random. The selection methods were limited to proportional-replacement

and proportional-no-replacement, so the GP-Tree always directly determined the relative

probability that an individual was to be selected.

In the rest of this section, we briefly describe the experimental setup, as well as the

observations resulting from this experiment, and how we incorporated this information into

the current version of the Hyper-heuristic. For more details on the methodology and results

of this experiment, refer to (Richter and Tauritz, 2018), in which this work was originally

published.

4.1. EXPERIMENTAL SETUP

We constructed a basic EA, utilizing traditional parent selection, recombination,

mutation, and survival selection. The target problem of the EA was an NK-Landscape

problem (Kaufmann, 1993; Whitley et al., 2016). We used the Hyper-heuristic to evolve

the parent selection stage of this EA. Survivor selection was always performed randomly,

thus forcing the parent selection to provide all of the EA’s selection pressure. We evaluated

selection functions by running the EAmultiple times on each of a number of NK-Landscape

functions, which are generatedwhen themeta-EA is initialized and held constant throughout

1see Table 3.1
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the experiment. The best fitnesses in the population at the end of each run of the EA using

the selection function were averaged and assigned to the selection function as its fitness at

the Hyper-heuristic level. When the meta-EA terminates, the best selection function was

tested against a number of conventional selection functions, including fitness proportional,

truncation, and k-tournament, with several values of k. The NK-Landscape problems used

for these tests were separately generated from the functions used during the meta-EA, to

test generalization.

4.2. RESULTS, OBSERVATIONS, AND TAKEAWAYS

The evolved selection function significantly outperformed all of the conventional

selections tested on 46 out of the 50 benchmark problems. This confirmed our initial

hypothesis that, by using a Hyper-heuristic search through the space of selection functions

as defined by our custom representation, a significant performance benefit can be achieved.

However, for future experiments, we needed to show that an evolved selection function could

not just outperform a number of handpicked selection functions, but the best possible se-

lection function, with the best possible parameters, from our suite of conventional selection

functions, in order to prove the validity of using our Hyper-heuristic versus conventional

fitness tuning methods. Thus, for future experiments, we used automated parameter tuning

to select the conventional selection function that the evolved selection function would be

measured against. We also noted that our representation could only effectively represent

a probabilistic selection scheme, which directly calculates the relative probability that an

individual will be selected as a function of its fitness. Although it was possible to map

other selection methodologies, such as tournament selection and truncation selection, to our

custom representation (see Appendix C for examples of these mappings), such mappings

were too complex to emerge during evolution, and so we built more options for the final

selection method into the representation. With these new selection methods, we moved

from evolving a GP-Tree to determine an individual’s probability of selection, to evolving
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a GP-Tree that output a more general “desirability” score for an individual, and allowed

various methods of selecting individuals based on their assigned desirability. We also

sought more benchmark problem classes to test our methodology on, as we had only shown

improvement and generalization for the NK-Landscape problem class. We additionally

sought to tune selection for a more state-of-the-art method of evolutionary computing, as

the EA for which we showed improvement was very basic.

The first of the three primary experiments presented in Section 5 is an updated

repetition of this experiment, with our updated methodology, on a problem class generalized

from the NK-Landscape class. We describe this experiment in more detail in Section 5.1.

The other two experiments incorporate the rest of our observations with new experimental

setups.
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5. PRIMARY EXPERIMENTS

We conducted three sets of experiments with our meta-EAmethodology. In our first

experiment, we evolved new parent and survival selection functions for a basic EA solving

benchmark problems in the MK-Landscape problem class. This experiment is described

further in Section 5.1.

In our second experiment, we used the same EA as in the first experiment, but

instead solving for real-valued benchmark problems selected from the COCO platform.

This experiment is described further in Section 5.2.

In our third experiment, we evolved a new mean-update scheme for a covariance

matrix adaptation evolution strategy (CMA-ES) (Hansen and Ostermeier, 1996), again solv-

ing for real-valued benchmark problems selected from the COCO platform. We select our

benchmark problems from the same problem classes as in Experiment 2, but with different

dimensionalities, in some cases. This experiment is described further in Section 5.3. The

parameters for the meta-EA used in each experiment are shown in Table 5.1. These param-

eters were manually tuned to allow for a population with high explorative potential while

keeping the total computation time manageable.

5.1. EVOLUTION OF PARENT AND SURVIVAL SELECTION FOR A BASIC EA
SOLVING MK-LANDSCAPES

Our first experiment is a repetition of our initial experiment described in Section 4,

with the methodology described in Section 3 on a generalized problem class. For this

experiment, we constructed a basic EA, utilizing traditional parent selection, recombination,

mutation, and survival selection. The target problem of the EA is an MK-Landscape
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Table 5.1. Meta-EA Parameters

Parameter Value

Population Size 40
Offspring Size 40

Evaluation Count 4000
Max GP-Tree Initialization Depth 4

Parent Selection k-tournament, k=4
Survival Selection Truncation

Mutation Subtree Regeneration
Crossover Subtree Crossover

Parsimony Pressure Coefficient 0.0005
Mutation Rate 0.25

Range for Constant Terminals [-100, 100]
Range for Random Terminals [-100, 100]
Number of Runs (Training) 5
Number of Runs (Testing) 200

problem, which is a generalization of theNK-Landscape problem (Kaufmann, 1993;Whitley

et al., 2016). The EA has a number of parameters, including µ, the population size; λ, the

offspring size; parent and survival selection schemes; and a mutation rate.

Each EA is assigned a single landscape to usewhen evaluating the population. When

the EA is initialized, a set of µ bitstrings is randomly generated as the initial population. The

fitness of each bitstring is measured against the MK-Landscape. 2λ individuals are selected

from the population. The selected individuals are paired up, and one new individual is

generated from each pair using per-bit crossover. Individuals are mutated at a configurable

rate, and all of the new individuals are evaluated. The population of µ + λ individuals is

then culled back down to µ individuals using survival selection. The process repeats until

the best fitness of the population stops increasing, and the fitness of the best bitstring in the

final population is taken as the final result of the EA run.

For the purposes of both determining the quality of evolved selection functions, and

testing the generalization of their performance, a number of MK-Landscape problems are

generated. Most of the generated problems are set aside for testing generalization, and the
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rest are used for training. Before the meta-EA is run, the optimal parameters for the EA

are determined using the irace parameter optimization package (López-Ibáñez et al., 2016).

irace is also used to determine schemes for traditional, non-evolved parent and survival

selection, selecting from a number of typical parent and survival selection methods, such

as truncation, fitness-proportional selection, and k-tournament selection. The parameters

and selection schemes are tuned together, so the parameters are tuned for the selection

scheme used. For the purposes of determining these parameters with irace, only the

training problems are used, and not the testing problems. This way, we can compare the

generalization of the selection functions picked by irace to the generalization of the selection

functions generated by the meta-EA.

Every member of the meta-EA population consists of two selection functions, which

are evolved together as one genome. The first selection function is used for parent selection,

and the second function is used for survival selection. When the meta-EA is initialized, each

selection function in the initial meta-EA population is measured by running the underlying

EA on each of the training problems, using the parameters found by irace but substituting

the evolved selection function for the irace-picked selection schemes. The final result of the

EA is averaged across all the training problems, for multiple runs per problem, and this mean

is assigned as the fitness of the evolved selection function. Once all of the evolved selection

functions have an assigned fitness, the meta-EA performs recombination and mutation to

generate the next generation of selection functions, which are evaluated in the same way.

The meta-EA continues until a number of generations pass with no improvement in the

quality of the selection functions, at which point it terminates.

When the meta-EA terminates, the selection function with the highest fitness is

selected, and EAs using this selection function are run on the testing problem instances.

The EA is also run on the same testing instances using the original irace parameters.

The performance of the EA using the evolved selection function is then compared to the

performance of the EA using the irace-chosen selection methods to test for generalization.
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Table 5.2. Bottom-level EA Parameters For MK-Landscape

Parameter Value

Population Size 91
Offspring Size 34

Genome Length (N) 40
Locus Length (K) 8

Number of Loci (M) 40
Locus Minimum Value 0
Locus Maximum Value 8

Parent Selection Fitness Ranking With Replacement
Survival Selection Fitness Ranking Without Replacement
Termination Criteria Convergence

Generations to Convergence 25
Mutation Random Bit Flip

Mutation Rate 0.0038
Crossover Per-Bit Crossover

Table 5.2 shows the parameters used in the bottom-level EA and for generating the

landscape functions. These parameters include the parent and survival selection functions

chosen by irace; for evaluating an evolved selection function, these functions are replaced

with the evolved functions.

5.2. EVOLUTION OF PARENT AND SURVIVAL SELECTION FOR A BASIC EA
SOLVING REAL-VALUED BENCHMARKS

Our second experiment utilized a similar approach to our first experiment, but the

benchmarks problem targeted by our EA were real-valued functions chosen from the 24

noiseless benchmark test functions contained in the COCO benchmark set.

For each of the 24 problem classes, COCO offers multiple benchmark instances

in each of several dimensionalities. For our experiment, we chose the 10-dimensional

problems, and utilized all of the available instances for each of the 24 problem classes.
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For each of the problem classes, a number of the instances were chosen to be the training

instances, used by the meta-EA to assign a fitness to an evolved selection function, and the

rest of the instances were set aside as testing instances, to test for generalization.

As with the first experiment, each run of the underlying EA is initialized with

a randomized population, but the population members are real-valued vectors initialized

within a range recommended by COCO, rather than bitstrings. Parent selection, arithmetic

recombination, mutation, and survival selection are used to advance the EA until the

population fitness is no longer increasing, and the best fitness attained by the EA is used as

a measure of the EA’s performance.

For this experiment, irace was run for the training instances of each of the 24

problem classes individually, generating 24 sets of parameters for the EA. These parameters

are listed in Appendix B.

The meta-EA was run as it was for the first experiment, with each evolved member

containing two selection functions: one to replace parent selection, and one to replace

survival selection. At the meta-EA’s conclusion, the best selection function evolved is

pitted against the traditional selection functions chosen by irace, running on the testing

problem instances to test generalization.

5.3. EVOLUTION OF SELECTION FOR CMA-ES SOLVING REAL-VALUED
BENCHMARKS

In the third experiment, we replaced the simple EAwith a more complex covariance-

matrix-adaptation evolution strategy (CMA-ES). This method repeatedly samples λ points

in a space around a mean, and uses a weighted combination of the high-value points to

update the mean, as well as the parameters that control the shape of the space to be sampled

in the next generation. In its traditional form, CMA-ES uses the µ highest-fitness points to

update the mean; from an EA-perspective, this is akin to truncation selection.
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For this experiment, we used the same meta-EA setup from previous experiments

to evolve a new method of selecting which of the sampled points to use for recalculating

the mean. The individuals of the meta-EA each encode a single selection function in their

genome, which modifies the mean-update functionality of CMA-ES. Rather than selecting

the µ highest-fitness points, which is done in standard CMA-ES, the encoded selection

function selects a subset of all the sampled points, which are then ordered by fitness and

used to update the mean. Once the mean is updated, all other state variables, such as the

covariance matrix, are updated using the same methods as the unchanged CMA-ES.

To select benchmark functions, we tested the unmodified CMA-ES on the COCO

functions. On many of the COCO functions, the solutions found by CMA-ES are close

enough to the function’s global optimum to meet the criteria set by COCO for solving the

function. For each of the 24 function classes, we selected the lowest dimensionality for

which CMA-ES was unable to find the global optimum (according to COCO’s own criteria)

at least half the time. We ignore the function classes for which CMA-ES is able to solve

the instances more than half the time with D ≥ 20. The functions chosen are detailed in

Table 5.3. Unlike with the first two experiments, we did not use irace to find a parameter

set for CMA-ES before running the meta-EA, as CMA-ES is much less dependent on initial

parameters. We use λ = 10 ∗ D, µ = λ/2, and σi = 0.5.

When evaluating the performance of an evolved selection function to assign a fitness

value to it, the fitness is taken as the proportion of the runs in which the modified CMA-ES

reaches the global optimum, or moves close enough to it to meet the criteria to solve the

problem.
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Table 5.3. COCO Benchmark Functions Chosen For Experiment 3

Function Index Dimensionality

3 2
4 2
6 10
12 10
15 2
16 10
19 2
20 2
21 2
22 2
23 5
24 2
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6. RESULTS AND DISCUSSION

Here, we present the results observed from the three experiments performed, as well

as a discussion of our observations.

6.1. RESULTS AND OBSERVATIONS FROM FIRST EXPERIMENT

For each of the problem instances in the testing set, we run the EA for 200 testing

runs, both with the evolved selection functions and with the traditional selection functions.

We then compare the final best fitnesses reached in the testing runs with a two-sided T-test

to test for a significant difference. If the variances are shown to be unequal by Bartlett’s

test (p ≤ 0.05), then the T-test is performed assuming unequal variances; otherwise, the

T-test is performed assuming equal variances. We found that, in 45 out of 50 of the testing

instances, the EA using the evolved selection function reached a significantly higher final

best fitness than the EA without an evolved selection function (p ≤ 0.05). In the remaining

5 testing instances, there was no statistical difference between the EA with and without the

evolved selection function.

Figure 6.1 shows the parent selection stage of the best selection function evolved by

the Hyper-heuristic. The survival selection was controlled by a separate, similar function.

Figure 6.2 shows the progression of the best population member’s fitness through

many runs of one of the testing functions, averaged for both the typical selection functions

and the evolved selection functions. We see that, on average, the evolved selection function

climbs more slowly towards a higher fitness before converging and terminating. Figure 6.3

shows a boxplot comparison of the final best fitnesses achieved on the same testing fitness

function, showing that, for this particular function, while the best fitnesses achieved by

the evolved selection functions are generally within the same range as those found by the

unmodified EA, they tend to be more consistently within the higher end, by comparison.
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Figure 6.1. The function that controlled parent selection in the best evolved selection
function.

The general trend that we observe, across all the testing problems, is that the EA

using the evolved selection functions tends to trend more slowly toward an area of high

fitness than the EA using the traditional selection functions. Although the evolved selection

functions take more evaluations to converge, they often converge at a higher fitness.

6.2. RESULTS AND OBSERVATIONS FROM SECOND EXPERIMENT

For each of the problem instances in the testing set, we run the EA for 200 testing

runs, both with the evolved selection functions and with the traditional selection functions.

We then compare the final best fitnesses reached in the testing runs with a two-sided T-test

to test for a significant difference. If the variances are shown to be unequal by Bartlett’s

test (p ≤ 0.05), then the T-test is performed assuming unequal variances; otherwise, the

T-test is performed assuming equal variances.. For each benchmark problem class in the

COCO functions dataset, we count the number of instances for which we find a statistically

significant difference between the final best fitness found by the EA with the best evolved

selection function and the final best fitness found by the EA without one. These results are

shown in Table 6.1.
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Figure 6.2. A plot of the best population fitness against the number of EA evaluations,
achieved by both the typical selection function and the evolved selection function, averaged
over all runs, for one of the testing functions of Experiment 1.

Figure 6.3. A box plot comparing the final best fitnesses achieved on one of the testing
functions of Experiment 1, by both the typical selection functions and the evolved selection
functions.
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Table 6.1. Experiment 2 Results

Problem Index (D=10) Number of Instances Improved

F=1 0 / 12
F=2 1 / 12
F=3 2 / 12
F=4 2 / 12
F=5 5 / 12
F=6 3 / 12
F=7 7 / 12
F=8 2 / 12
F=9 12 / 12
F=10 1 / 12
F=11 7 / 12
F=12 0 / 12
F=13 2 / 12
F=14 0 / 12
F=15 0 / 12
F=16 0 / 12
F=17 4 / 12
F=18 4 / 12
F=19 12 / 12
F=20 0 / 12
F=21 7 / 12
F=22 6 / 12
F=23 0 / 12
F=24 0 / 12

We find that, for some problem classes, such as 7, 9, 11, 19, 21, and 22, the evolved

selection function enabled the EA to perform significantly better in at least half of the testing

instances used. For most of the testing cases, however, there were few or no testing instances

for which the EA using the evolved selection function performed significantly better than

the EA using only the parameters found by irace.
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6.3. RESULTS AND OBSERVATIONS FROM THIRD EXPERIMENT

For each problem instance in the testing set, we run the CMA-ES for 200 testing

runs, both using the evolved selection function and unmodified. We then measure, for each

testing instance, the proportion of runs which solved the function, in each case. For each

testing instance, the percentage of runs solved by the modified and unmodified CMA-ES is

shown in Table 6.2.

For the problem classes 4, 6, 12, 19, 20, and 21, the CMA-ES modified with the

evolved selection function solved the problem instance more often than the unmodified

CMA-ES. For the functions 4, 19, 20, and 21, the success rate of CMA-ES increased by

20-30 percent when modified with the evolved selection function. For functions 6 and 12,

the effect is much more dramatic: on function 6, the success rate increased from 0 percent

to around 96 percent, and on function 12, the success rate increased from 18-67 percent,

varying across the function instances, to 100 percent for all function instances.

For the function indices 3, 15, 16, 23, and 24, there was no major difference between

the success rate of the modified and unmodified CMA-ES.
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Table 6.2. Experiment 3 Results

Problem Instance F=3,D=2 F=4,D=2 F=6,D=10 F=12,D=10
0 36.0% / 34.5% 34.0% / 4.0% 96.5% / 0.0% 100.0% / 41.0%
1 32.5% / 33.5% 36.0% / 1.5% 96.0% / 0.0% 100.0% / 40.0%
2 38.5% / 38.0% 26.5% / 2.0% 97.5% / 0.0% 100.0% / 55.5%
3 37.5% / 30.5% 34.5% / 3.5% 94.5% / 0.0% 100.0% / 52.0%
4 34.0% / 35.0% 38.0% / 3.5% 93.5% / 0.0% 100.0% / 51.5%
5 35.0% / 32.5% 9.0% / 4.0% 95.0% / 0.0% 100.0% / 48.0%
6 33.5% / 35.0% 36.5% / 4.5% 95.0% / 0.0% 100.0% / 18.0%
7 38.0% / 37.5% 37.5% / 2.0% 98.0% / 0.0% 100.0% / 31.0%
8 35.0% / 33.5% 36.0% / 3.5% 97.5% / 0.0% 100.0% / 36.0%
9 36.5% / 32.0% 33.5% / 4.5% 96.5% / 0.0% 100.0% / 67.5%

Problem Instance F=15,D=2 F=16,D=10 F=19,D=2 F=20,D=2
0 40.0% / 45.5% 39.5% / 37.0% 48.0% / 38.0% 45.0% / 25.0%
1 43.0% / 47.0% 42.5% / 41.5% 53.0% / 38.0% 46.0% / 22.5%
2 47.0% / 45.5% 40.0% / 41.0% 58.0% / 36.5% 54.0% / 24.5%
3 39.5% / 40.0% 43.0% / 38.5% 55.0% / 30.0% 44.5% / 22.5%
4 40.0% / 40.0% 42.0% / 47.0% 54.0% / 34.0% 46.0% / 26.0%
5 41.0% / 45.0% 32.5% / 38.0% 56.5% / 40.0% 45.5% / 26.5%
6 38.0% / 32.0% 45.5% / 40.5% 55.5% / 38.0% 50.0% / 27.0%
7 42.0% / 42.5% 41.5% / 42.0% 61.0% / 32.0% 48.5% / 23.5%
8 43.0% / 43.0% 37.5% / 37.5% 53.0% / 34.0% 54.5% / 24.5%
9 41.0% / 39.0% 36.5% / 34.0% 56.5% / 40.5% 49.5% / 26.0%

Problem Instance F=21,D=2 F=23,D=5 F=24,D=2
0 61.0% / 37.5% 25.0% / 39.0% 1.0% / 3.0%
1 36.0% / 19.5% 26.5% / 28.0% 0.5% / 1.0%
2 59.5% / 28.0% 29.5% / 30.0% 0.5% / 1.5%
3 66.5% / 37.0% 37.5% / 35.0% 3.5% / 1.0%
4 38.5% / 18.5% 31.5% / 29.0% 2.5% / 0.5%
5 34.5% / 16.5% 30.0% / 33.0% 1.0% / 2.0%
6 63.0% / 24.5% 33.0% / 33.5% 1.0% / 0.5%
7 56.0% / 28.5% 35.5% / 30.0% 3.5% / 2.0%
8 76.5% / 33.0% 35.5% / 26.5% 1.0% / 2.0%
9 76.5% / 33.5% 36.5% / 28.0% 1.5% / 1.0%
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6.4. DISCUSSION OF RESULTS

In our first experiment, we observed that, for an EAwith a given set of parameters, an

evolved selection function can lead to a significant increase in performance that successfully

generalizes to other similar instances in the same problem class. The behavior that we see

in the EAs using the evolved selection functions, where the fitness grows more slowly and

converges later, at a higher fitness, suggests that the meta-EA evolved toward selection

schemes with less selection pressure on the population, allowing them to explore further

to find better optima. Even though the candidate parameters for the EA, as selected by

irace, included several selections of varying selection pressures (including k-tournament

with configurable k), the evolved selection functions still seemed to find a better balance of

exploration versus exploitation.

In our second experiment, we observed varying results in the ability for the EA with

the evolved selection function to outperform the EA without one. In some cases, a large

improvementwas seen by applying the evolved selection function, resulting in theEAfinding

significantly higher fitnesses in at least half the testing instances. In many cases, applying

the evolved selection function results in significantly higher fitnesses on fewer than half of

the test cases, and in some cases, there is no observed significant improvement whatsoever.

This deficiency could be due to a number of factors. It is possible that, within the meta-

EA, the evolved selection functions over-specialized to the training functions provided, and

sacrificed the ability to generalize for increased improvement on the training functions. It is

also possible that some of the functions selected from the COCObenchmarks are sufficiently

complex that the EA setup we used required a more sophisticated improvement than a new

selection function to gain an appreciable benefit to solving these functions. Some functions

chosen may also be so simple that the EA already performs well enough that a change in

selection function has a negligible impact on performance, as long as it exerts sufficient
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selection pressure. We attempted to remedy the issue of function difficulty in our third

experiment by carefully selecting functions for which the unmodified CMA-ES performed

moderately, but not exceptionally, well.

For our third experiment, we observed that evolving a new selection function for

CMA-ES increased its solution quality on 6 of the 11 functions tested. In particular, we

observed two cases with high dramatic improvements: the tests for COCO function classes

6 and 12. In the case of function class 6, the unmodified CMA-ES was unable to solve any

of the testing instances, but the CMA-ES using the evolved selection solved these instances

nearly 100% of the time. In the case of function class 12, the success rate of the unmodified

CMA-ES varied strongly between instances, ranging from 18 to 67%. The modified CMA-

ES, however, solved every test instance, reaching the global best fitness in each of 200

runs, on each of the testing instances, achieving a 100% success rate. By observing the

increases in success rate for some of the functions, it is clear that evolving a new selection

scheme for CMA-ES provides a substantial benefit in some cases. The five cases where no

improvement was observed involved functions that were highly multimodal. Three of these

function were variants of the Rastrigin function, a highly multimodal function and the other

two—the Weierstrass Function and the Katsuura Function—are highly rugged. It is likely,

in these cases, that CMA-ES requires some other improvement aside from a new selection

scheme to better learn and traverse the global structures of these functions. Because we

only replaced the selection scheme of CMA-ES, we only changed how it internally updates

the mean. Improving the performance of CMA-ES on these functions likely requires more

intelligent updating of the other internal variables of CMA-ES, such as the evolution paths,

the covariance matrix, and the step size.
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7. CONCLUSIONS

We hypothesized that a Hyper-heuristic search through the space of selection func-

tions for EAs could improve the performance of an EA on a particular problem class by

discovering a specialized selection function. We developed a representation of selection

functions that uses a Koza-style GP-Tree to relate an individual’s fitness value and fitness

ranking to its relative probability of selection, and used a meta-EA to search through the

space of selection functions in this representation.

With this meta-EA, we have shown that it is possible to generate new selection

functions, tuned to a particular benchmark problem, that can enable an EA to significantly

outperform conventional selection functions on those problems. Thus, we show that, in

order to discover the optimum selectionmethod for an EA operating on a particular problem,

it may not be sufficient to use any of the static conventional selection functions tested. We

have also shown that, in some cases, this performance increase from a custom selection

algorithm will generalize to similar problems in the same problem class. Therefore, if one

expects to run the same EA on many problems from the same problem class, one might

expect to gain a performance increase by doing some a priori calculation to develop a

specialized selection algorithm trained on instances of that problem class, which would

then enable an EA utilizing that selection function to perform better on other instances of

that problem class. However, our experiments have also shown that, for certain functions,

replacing only the selection function may not yield significant performance improvements,

depending on the behavior of the search strategy and the nature of the function being

optimized by the EA. Careful consideration must be given to determine what the effect

of tuning the selection scheme of a given EA will be on the performance of that EA, and

whether such tuning will cause the EA to have an appreciable performance increase on the

problem class in question.
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8. THREATS TO VALIDITY

Although we strove to ensure the robustness of our methodology and experimental

setup, there are some careful considerations that must be made when interpreting these

results which may threaten the validity of our claims.

Of obvious note is the fact that, while we have shown improved performance on the

benchmark functions tested, we still have yet to test this method on EAs run in real-world

scenarios, and we do not yet know whether the supposed performance benefit is, in practice,

enough to warrant the a priori computation necessitated by our methods.

In Experiment 1 and Experiment 2, we used a very rudimentary EA, and it is highly

unlikely that such an EA would be the best practical approach for a given problem, given

the countless advancements in the field of evolutionary computing. We chose such a simple

EA to illustrate our point that the selection function, while deceptively simple to configure

by selecting a conventional selection function with proven effectiveness, has a large impact

on the performance of an EA.

For our third experiment, we chose CMA-ES as a testing target for extending

our method to a more state-of-the-art method. However, the implementation of CMA-

ES we used was fairly basic, lacking restarts in particular, and much research has been

done on improved and alternative variants of CMA-ES. For certain problems, these newer

variants may offer the same, or greater, performance increases as an evolved selection

function. However, if these newer variants also use some selection function to update

internal variables, as the basic implementation does, then evolving a new selection function

for these newer variants could generate an even greater increase in performance; this opens

up an avenue for future research.
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Some of the terminals used by the GP-Trees enable selection functions to have ac-

cess to some information that conventional selection functions such as fitness proportional

selection and truncation selection do not have. This information includes generation num-

ber and genome uniqueness, which can allow the selection function to account for other

factors besides the fitness of the individual and the population at large. This might make

the comparison to these functions in experiments 1 and 2 unfair. We chose the set of

conventional selection functions available to irace in experiments 1 and 2 as the functions

that are commonly used in straightfoward EAs, in order to show that an evolved selection

function with access to additional information may be worth the a priori computation cost

if the alternative is to simply use a conventional selection function selected from the most

common choices that would work acceptably well for most EAs. To investigate whether the

meta-EA still performs well, even with a limited set of terminals, we ran the experimental

setup discussed in Experiment 3, but with a more limited set of terminals. We discuss this

in Appendix D.
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9. FUTURE WORK

The work presented in this thesis opens a number of potential avenues for future

research. Of primary concern is the fact that the meta-EA presented in this thesis requires

a large amount of a priori computation to generate a high-quality selection function. While

this computational cost may be worth it for EAs that will run on problems from the same

problem class many times, a more efficient method of finding good selection functions

has a much greater potential to benefit EAs in general. Exploring a method of online

learning could allow for the elimination of the expensive a priori computation time, allowing

specialized selection functions to be generated during the evolution.

The EA and CMA-ES in our experiments were tuned to increase performance on

the MK-Landscape problem class and the COCO benchmark problem classes. While these

problems are difficult and non-trivial to optimize for, they are entirely artificial, and the

meta-EA has not yet been used to tune an EA for solving a real-world problem class. While

the MK-Landscape problem class and related problems are used in several real-world fields,

a major next step for this work is to apply the meta-EA to real-world EAs that could benefit

from new, specialized selection functions. Of particular interest are EAs that are expected

to be run many times on problems from the same general problem class, which would, over

many runs, amortize the a priori computation time required to tune the selection function.

Because the objective of this thesis is similar to the work done to develop selection

algorithms viaGrammatical Evolution (Lourenço et al., 2013) and registermachines (Wood-

ward and Swan, 2011), it remains to be seen which cases each method is more effective for,

and a direct comparison of the methods on the same benchmark problems may yield more

insight into which offers better performance benefits under certain conditions.
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In the case of Experiment 1 and Experiment 2, the evolved selection functions were

only tested against basic selection functions that lacked any self-adaptability. More work

will need to be done to determine whether the best evolved selection functions can stand up

to more dynamic, adaptable selection methods, if EAs such as the one used in Experiments

1 and 2 are targeted for improvement.

For the third experiment, the framework of CMA-ES used was fairly basic, lacking

features such as restarts. In addition, many techniques have been developed to improve the

performance of CMA-ES on functions where it may be deficient. Evolving a specialized

selection function for these new forms of CMA-ES may lead to even greater performance

gains, or may not even be necessary for particular problem classes. Additionally, as we

noted in our conclusions, we only made efforts to improve the selection of points used in

the mean-update step of CMA-ES, which allowed to it gain increased performance in some,

but not all, of the problem cases tested. Further experiments to tune the selection of points

used for updating the other internal variables, such as evolution path, covariance matrix,

and step-size, may lead to greater changes in the behavior of CMA-ES, and thus, greater

changes in performance.

For our meta-EA, the GP-Trees utilized several terminals related to the individual,

such as fitness, fitness ranking, uniqueness of genome, and birth generation, as well as

terminals related to the evolution at large, such as population size and generation number.

Adding additional available terminals increases the information available to the meta-EA,

allowing it to potentially evolve more intelligent selection functions. In particular, there are

no terminals that allow the selection function to have any internal persisting memory from

generation to generation, such as the best fitness of past generations or which individuals

have been selected previously. Additionally for EA’s with sexual reproduction, or selection

schemes involving individuals selected in pairs or groups, there is no terminal that measures

two individuals relative to each other. This prevents themeta-EA fromdeveloping a selection

function based on any information about an individual’s mate, such as fitness, genome, etc.
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To add these terminals to the meta-EA, the selection function representation would need to

be updated such that, when determining the desirability of an individual, the GP-Tree would

take as input the information of some other individual to be selected for a similar purpose,

such as recombination of the same child (for an EA with two-parent recombination) or

selection for update of the same internal variable (for an Evolution Strategy such as CMA-

ES).

The parameters at the meta-EA level were manually tuned to allow for a high degree

of exploration. A sensitivity analysis of these parameters, as well an investigation of

parameter tuning/control, could increase the performance of the meta-EA.
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Here, we provide psuedocode to describe the procedures of the final selection

methods utilized by the evolved selection functions. Refer to Table 3.3 for a list and

description of the selection methods. Note that each of these methods take as input a

population P of size n, from which individuals will be selected; a number of individuals m

to be selected; and a function F, which is the mathematical function encoded by the GP-Tree

associated with the selection function. The method returns a list of the selected individuals.

F takes as input the population P, and a population member p, and returns a real number,

representing the desirability score of the population member.

Algorithm 2 describes the procedure for Proportional-Replacement selection.

Algorithm 2 Proportional Selection With Replacement
1: function ProportionalReplacement(P, m, F)
2: W(p) ← 0,∀p ∈ P
3: for all p ∈ P do
4: W(p) ← F(P, p)
5: end for
6: wmin ← minimum(W)
7: s← 0
8: for all w ∈ W do
9: if wmin < 0 then
10: s← s + (w − wmin)

11: else
12: s← s + w
13: end if
14: end for
15: selected ← ∅
16: for j ← 1,m do
17: r ← random(0, s)
18: i ← 1
19: ps ← P(i)
20: while r > W(ps) do
21: r ← r −W(ps)

22: i ← i + 1
23: ps ← P(i)
24: end while
25: selected ← selected ∪ ps
26: end for
27: return selected
28: end function
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Algorithm 3 describes the procedure for Proportional-No-Replacement selection.

Algorithm 3 Proportional Selection Without Replacement
1: function ProportionalReplacement(P, m, F)
2: W(p) ← 0,∀p ∈ P
3: for all p ∈ P do
4: W(p) ← F(P, p)
5: end for
6: wmin ← minimum(W)
7: s← 0
8: for all w ∈ W do
9: if wmin < 0 then
10: s← s + (w − wmin)

11: else
12: s← s + w
13: end if
14: end for
15: selected ← ∅
16: for j ← 1,m do
17: r ← random(0, s)
18: i ← 1
19: ps ← P(i)
20: while r > W(ps) do
21: r ← r −W(P − s)
22: i ← i + 1
23: ps ← P(i)
24: end while
25: selected ← selection ∪ ps
26: P← P − ps
27: end for
28: return selected
29: end function

Algorithm 4 describes the procedure for k-Tournament-Replacement selection. Note

the additional parameter k, which controls the size of the tournaments.

Algorithm 5 describes the procedure for k-Tournament-No-Replacement selection.

Note the additional parameter k, which controls the size of the tournaments.

Algorithm 6 describes the procedure for Truncation selection.

Algorithm 7 describes the procedure for Stochastic-Universal-Sampling selection.
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Algorithm 4 k-Tournament Selection With Replacement
1: function ProportionalReplacement(P, m, F, k)
2: selected ← ∅
3: for j ← 1,m do
4: tournament ← k members selected randomly from P
5: MaxScore = − inf
6: for all t ∈ tournament do
7: if F(P, p) > MaxScore then
8: winner ← p
9: MaxScore← F(P, p)
10: end if
11: end for
12: selected ← selected ∪ winner
13: end for
14: return selected
15: end function

Algorithm 5 k-Tournament Selection Without Replacement
1: function ProportionalReplacement(P, m, F, k)
2: selected ← ∅
3: for j ← 1,m do
4: tournament ← k members selected randomly from P
5: MaxScore = − inf
6: for all t ∈ tournament do
7: if F(P, p) > MaxScore then
8: winner ← p
9: MaxScore← F(P, p)
10: end if
11: end for
12: selected ← selected ∪ winner
13: P← P − winner
14: end for
15: return selected
16: end function
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Algorithm 6 Truncation
1: function ProportionalReplacement(P, m, F)
2: W(p) ← 0,∀p ∈ P
3: for all p ∈ P do
4: W(p) ← F(P, p)
5: end for
6: P← P sorted by W , descending
7: selected ← ∅
8: for j ← 1,m do
9: selected ← selected ∪ P( j)
10: end for
11: return selected
12: end function
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Algorithm 7 Stochastic Universal Sampling
1: function StochasticUniversalSampling(P, m, F)
2: W(p) ← 0,∀p ∈ P
3: for all p ∈ P do
4: W(p) ← F(P, p)
5: end for
6: wmin ← minimum(W)
7: s← 0
8: for all w ∈ W do
9: if wmin < 0 then
10: s← s + (w − wmin)

11: else
12: s← s + w
13: end if
14: end for
15: selected ← ∅
16: interval ← s/n
17: o f f set ← random(0, interval)
18: for j ← 1,m do
19: r ← ( j − 1) ∗ interval + o f f set
20: i ← 1
21: ps ← P(i)
22: while r > W(ps) do
23: r ← r −W(ps)

24: i ← i + 1
25: ps ← P(i)
26: end while
27: selected ← selected ∪ ps
28: end for
29: return selected
30: end function
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Table 1. irace tuned parameters for EA used in Experiment 2

Function Index Population Size Offspring Size Mutation Rate

1 54 99 0.1021
2 15 96 0.1172
3 45 82 0.0853
4 28 96 0.1576
5 3 89 0.8467
6 4 86 0.3399
7 13 93 0.3261
8 10 98 0.1403
9 18 73 0.0893
10 23 76 0.2451
11 15 75 0.1801
12 55 96 0.0914
13 88 95 0.1656
14 13 96 0.1963
15 62 99 0.0066
16 89 81 0.157
17 85 97 0.1521
18 43 92 0.1178
19 33 93 0.1141
20 31 91 0.1748
21 42 97 0.3282
22 89 84 0.1373
23 16 92 0.1704
24 20 80 0.053

For each of the 24 benchmark functions in the COCO benchmark set, a set of

optimal parameters for the EA was found using the irace tuning package. The parameters

used are listed here, in Table 1. The parent and survival selection schemes are also tuned,

and these selections are shown in Table 2. Note that, during the execution of the meta-EA,

these parent and survival selection are replaced by the evolved parent and survival selection

schemes, and are only used when testing against the final evolved selection function at the

termination of the meta-EA.
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Table 2. irace tuned selection functions for EA used in Experiment 2. Tournament, pro-
portional, and ranking selections are performed with replacement, except where otherwise
noted.

Function Index Parent Selection Survival Selection

1 k-tournament, k=15 k-tournament without re-
placement, k=89

2 Fitness ranking truncation
3 k-tournament , k=15 Truncation
4 k-tournament , k=12 Truncation
5 Stochastic Universal Sam-

pling
Truncation

6 Fitness ranking Truncation
7 Fitness ranking Truncation
8 Fitness ranking Truncation
9 Fitness proportional Truncation
10 Fitness proportional Truncation
11 Fitness proportional Truncation
12 k-tournament, k=16 Truncation
13 k-tournament, k=51 Truncation
14 Fitness ranking k-tournament without re-

placement, k=40
15 Fitness ranking Truncation
16 k-tournament, k=18 Truncation
17 k-tournament, k=12 Truncation
18 Fitness ranking Truncation
19 Fitness ranking k-tournament without re-

placement, k=30
20 k-tournament, k=15 Truncation
21 Fitness ranking Truncation
22 k-tournament, k=37 Truncation
23 Fitness ranking Truncation
24 Fitness ranking Truncation
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In the earlier version of our selection function representation, as presented in (Richter

and Tauritz, 2018), the GP-Trees were used to directly evolve the relative probability that an

individual would be selected, as a function of its fitness, fitness ranking, and population size.

This method closely resembles fitness proportional selection, but other selection schemes

can be represented in this format as well. In Figure 1, we show how examples of these

selection schemes would be represented by the evolved GP-Tree.
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Figure 1. The GP-Trees encoding the selection probabilities for typical selection functions,
including a) Fitness proportional, b) Fitness Ranking, c) Truncation (T=40), and d) k-
tournament (k=2).
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In order to determine whether the extra information provided by certain GP-Tree

terminals was enabling selection functions to perform better, as opposed to the fitness-

related information used by conventional selection functions, we ran the meta-EA again,

with the experimental setup described in Section 5.3, on the 6 benchmark functions that the

evolved selection function performed well on. We disallowed the Birth Generation, Relative

Uniqueness, and Generation Number terminals, thus restricting the meta-EA to using the

information accessible to the conventional selection functions. Even with the restriction,

the meta-EA performed well on all 6 of the benchmark functions that it performed well on

previously. The results are shown in Table 1.

These results show that the performance increase gained by the evolved selection

functions does not depend solely on the additional information supplied by the meta-

EA terminals, and that a better tuned selection function may be evolved using only the

information available to the conventional selection functions that the evolved selection

function is measured against.
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Table 1. Experiment 3 Results with Limited Meta-EA Terminals

Problem Instance F=4,D=2 F=6,D=10 F=12,D=10
0 38.0% / 3.0% 95.0% / 0.0% 100.0% / 44.0%
1 20.5% / 4.0% 92.5% / 0.0% 100.0% / 40.0%
2 0.5% / 3.5% 93.0% / 0.0% 100.0% / 55.5%
3 31.5% / 2.0% 92.5% / 0.0% 100.0% / 47.0%
4 36.5% / 6.0% 89.0% / 0.0% 100.0% / 51.0%
5 0.0% / 6.0% 91.0% / 0.0% 100.0% / 48.5%
6 11.5% / 4.0% 90.5% / 0.0% 100.0% / 20.0%
7 33.0% / 3.0% 97.0% / 0.0% 100.0% / 35.0%
8 3.0% / 3.5% 97.0% / 0.0% 100.0% / 34.0%
9 30.5% / 6.0% 94.5% / 0.0% 100.0% / 70.5%

Problem Instance F=19,D=2 F=20,D=2 F=21,D=2
0 53.5% / 35.0% 45.0% / 26.5% 58.5% / 34.5%
1 60.5% / 39.0% 51.0% / 28.5% 38.5% / 19.5%
2 56.5% / 36.0% 50.5% / 22.5% 55.5% / 30.5%
3 56.5% / 37.0% 54.5% / 26.0% 69.5% / 38.5%
4 54.0% / 37.5% 42.5% / 21.0% 53.5% / 20.5%
5 58.0% / 39.0% 53.0% / 27.0% 32.0% / 20.5%
6 57.0% / 30.5% 59.0% / 21.5% 61.5% / 29.0%
7 54.0% / 40.5% 45.5% / 19.5% 51.0% / 27.5%
8 61.0% / 41.5% 52.0% / 19.5% 80.0% / 32.0%
9 54.0% / 43.0% 49.0% / 26.0% 74.0% / 38.5%
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